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Abstract

The purpose of this bachelor thesis is to develop an autonomous algorithm that is
able to calculate a vector to the center of the earth from ordinary image data. The
introduction shows the general purpose of attitude sensor systems and the HORACE
project is explained. The first part of the development is a detailed elaboration of the
algorithmic approach with its inputs, outputs and every step of the image processing.
The next part is the implementation of this approach as payload for the HORACE
project using the OpenCV runtime library. The last part is a further development of
this implementation towards an application in embedded systems. Therefore all used
functions from OpenCV are implemented as member functions of the algorithm using
standard c++ libraries only.At the end of this thesis an outlook to the future use of
this horizon sensor is given.
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1 Introduction
Every space mission has di�erent objectives and constraints which result in a very
unique set of requirements. All subsystems must be build in order to fulfill these
requirements and thus are custom made. However, all missions can be divided into
three general segments, their elements and subsystems.

Figure 1.1: role of the attitude determination system (ADS) in a space mission [LWH09,
1.2.1]

A space mission basically consists of the transfer segment, the ground segment and
the space segment. The space segment describes the device that is launched by the
transfer segment and is controlled by the ground segment. This segment itself has the
elements payload, orbit and spacecraft. The segments spacecraft and orbit create the
needed environment for the payload and thus are highly influenced by it. The space-
craft, also known as space vehicle platform or (satellite) bus, has seven subsystems:
structure, power supply, thermal control, communications, data processing, propul-
sion and attitude control. The attitude determination & control system (ADCS)
is responsible for the orientation of the spacecraft and may not be mistaken with the
propulsion system which, controls the orbit (cf. [LWH09, 1.2.1]). Figure 1.2 illustrates
the typical control loop of an active ADCS. In most common applications the main
task of the ADCS is to preserve a desired attitude but changes are nevertheless required
for adjustments of antennas or cameras. This desired attitude is compared with the
measured attitude by the ADS. The deviation is used in the attitude control system
(ACS) computer to calculate the needed rotations to obtain the desired attitude. This
information is send to the actuators that generate corresponding torques. Due to the
limited accuracy of the actuators and external disturbance torques, the spacecraft’s
actual attitude status di�ers from the desired attitude. Disturbance torques can be
caused by the magnetic field of the planet, the inhomogeneous gravity field of the
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1. Introduction 8

planet, solar radiation and residual atmosphere. The attitude status is measured again
by the sensors of the ADS and the closed control loop starts from the beginning.

Figure 1.2: Attitude control loop [LWH09, Figure 4.5.4]

1.1 Attitude Determination
The attitude of a spacecraft describes the orientation of a vehicle in space but does
not give any information about the position. This orientation is always given with
respect to a reference system either as direction vectors or as angles. The data of
the spacecraft’s current attitude status, needed by the ACS, is provided by the ADS.
The ADS can be realized by a wide range of sensors and is influenced by the accuracy
requirements of the ACS. Satellite builders have several sensor systems at hand to
design the satellite’s ADS (cf. [LWH09, 1.2.1]):

• star sensors

• sun sensors

• earth sensors

• magnetometers

• gyroscopes

• global navigation satellite system (GNSS) for attitude determination

Star sensors are well known for their high accuracy of a few arc seconds and the three-
axis attitude information. They consist of a camera and an electronic part for the
image processing. By comparing stars in the image with a star catalog they are able to
identify star patterns and to determine the inertial attitude. Due to the sensor’s high
light sensitivity, not only a very steady picture must be available but furthermore, the
sensor su�ers from hard radiation and must be cooled to lower the degradation.
Sun sensors are two-axis sensors and can be divided in coarse and fine sun sensors.
The coarse sensors are basically solar cells which are mounted on several positions of
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the spacecraft. By comparing the currents of the cells the attitude status is measured
with a 20¶ ≠10¶ accuracy. Fine sun sensors are either an array of photo cells or a CCD
chip and provide an accuracy of 0.01¶.
Earth sensors detect the horizon of the earth in the thermal infrared spectrum at a
wavelength of about 15µm and determine the attitude angles roll and pitch. The
attitude information is available during the whole orbit but is temporarily disturbed
by the sun and the moon, if in the field of view. These sensors can be divided in two
kinds, the static and the scanning sensors. The static earth sensor is a pair of two
germanium lenses which produce a current according to their exposure. By comparing
these currents the attitude information can be provided with 1¶ accuracy. For a two-
axis attitude information, at least two static sensors are necessary. The scanning sensor
has a rotating mirror and provides a two-axis attitude information with an accuracy
of 0.05¶ by measuring the transitions of the horizon signal.
Magnetometers use the magnetic field of the earth to extract an attitude information.
This cheap and reliable sensor provides an accuracy of 0.1¶ ≠ 1¶. Disturbances can
occur by the magnetic field of the satellite. Therefore, the magnetometer must be
placed in a distance outside the satellite.
Gyroscopes measure the rotations in the inertial reference frame without any external
sources. The attitude information can be provided as angular velocity or as an angular
increment of the last measurement span. There are three types used: the mechanical
gyro, the Fiber Optic Gyro (FOG) and the Ring Laser Gyro (RLG). The mechanical
gyro has a rotating mass which is torques-free, gimbal mounted and thus forms a
inertial reference system. The attitude angles can then be directly measured with an
accuracy of 0.01¶/h. Both, the FOG and the RLG use the interference of two laser
beams to measure the angular rotation. The FOG reaches an accuracy of 1¶/h whereas
the RLG reaches an accuracy of 0.01¶/h.
Although, GPS and GLONASS were build for position determination on earth, the
signals can be used to get a three-axis attitude information in space. The accuracy of
0.1¶ is reached by positioning several antennas on di�erent places of the spacecraft and
determining the time discrepancy of the signal received at the antennas (cf. [LWH09,
4.5.6]).

1.2 Horizon Sensor
The horizon sensor, whose software development is part of this work, is meant to extend
the list of available ADS sensors. The clou of this two-axis earth sensor is that it works
in the visible spectrum of light. Its desired design is either a software package for
satellites that already carry a camera or a stand-alone system with a build-in camera
and an electronic part for the image processing. Either way, this system has many
advantages:
If used as a software package there is no additional mass and even the stand-alone ver-
sion does not exceed the estimated mass of 0.3 kg since similar systems are even lighter
(e.g. STELLA, University of Würzburg). Since no special hardware, like germanium
lenses in the static earth sensor, is used, the costs of this system are estimated to be
relatively low. The field of operation must not only be in an earth orbit but can also
be in an orbit of any other planet. The star sensor needs a very steady picture to
function whereas the horizon sensor also works at a rotation with high rates. So does
the sun sensor, but the sun is a small object that is likely to be missed while rotating.
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However, when orbiting a planet, it is the biggest object visible and thus very likely
to be in the field of view. In contrast to the scanning earth sensor, the horizon sensor
has no moving parts and is less sensible to the degradation of the optical sensor than
the star sensor. Sun and moon in the field of view do not a�ect the performance of the
sensor.
But along with the advantages there also come disadvantages: Due to the sensitivity to
visible light, the horizon sensor does not function during the whole orbit. The output
data rate is estimated to be lower than the rate of conventional earth sensors.

1.3 HORACE
1.3.1 Basic Idea

Figure 1.3: HORACE mission Patch

HORACE stands for Horizon Acquisition Experiment and is a student project in the
REXUS programme.

1.3.2 REXUS
"The Rocket Experiment for University Students (REXUS) programme allows students
from universities and higher education colleges across Europe to carry out scientific and
technological experiments on sounding rockets. Each year, two rockets are launched,
carrying up to 10 experiments designed and built by student teams. The basic idea
behind REXUS is to provide an experimental space platform for students in the field
of aerospace technology.
The REXUS/BEXUS programme is realised under a bilateral Agency Agreement be-
tween the German Aerospace Center (DLR) and the Swedish National Space Board
(SNSB). The Swedish share of the payload has been made available to students from
other European countries through a collaboration with the European Space Agency
(ESA). EuroLaunch, a cooperation between the Esrange Space Center of the Swedish
Space Corporation (SSC) and the Mobile Rocket Base (MORABA) of DLR, is respon-
sible for the campaign management and operations of the launch vehicles. Experts
from DLR, SSC, ESA and the Center of Applied Space Technologie and Micrograv-
ity (ZARM) provide technical support to the student teams throughout the project.
REXUS and Balloon Experiment for University Students (BEXUS) are launched from
SSC, Esrange Space Center in northern Sweden." [RX/14, REXUS]
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The ADCS of a satellite must work autonomously not only during nominal phases
of the mission, but also in unexpected situations or emergency cases. An emergency
case could occur when the satellite is spinning and tumbling uncontrolled at high
rates. It is therefore necessary to have an ADS sensor that is able to operate in
stress conditions and is also a�ordable for smaller satellites and missions. Almost all
missions are situated in the orbit of a massive central body which in most cases is
the earth. It is nearly impossible that the satellite would spin and tumble in a mode
during which the central body is never visible. Thus it is reasonable to use the central
body for attitude determination. In contrast to existing earth sensors, that detect the
earth’s IR radiation, HORACE uses an optical sensor for the horizon detection, which
is sensitive to the visible spectrum, to keep expenses low and to emphasis the image
processing software-components of the system. (cf. [RGW+14, 1.1])
Figure 1.4 defines some terms and provides an overview of the hierarchy within the
project. HORACE is divided in two segments, the flight segment (FS) and the ground
segment (GS). The FS consists of the subsystems core system (CS), measurement unit
(MU), power distribution unit (PDU), camera (CAM) and the mechanical structure.
The GS is compromised of the ground station, the mechanical ground support equip-
ment (MGSE) and the electrical ground support equipment (EGSE).

Figure 1.4: HORACE hierarchy [RGW+14, Figure 1-1]
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1.3.3 Mission Statement
"HORACE on REXUS 16 is a technology demonstration mission for autonomous earth
detection on satellites. The aim is to prove or disprove the general technical feasibility of
the outlined approach. During the mission the functionality and robustness of the gen-
eral approach is tested under realistic, space-like conditions, by means of the HORACE
flight segment. After post flight evaluation it shall be determined whether the approach
of autonomous horizon acquisition with a camera in conjunction with image processing
algorithms running on an embedded system connected to the CAM is indeed apt to
(re)acquire a satellite’s attitude under nominal or stress conditions." [RGW+14, 1.2]

1.3.4 Mission Objectives
"With HORACE, whose development will be part of the mission, the following primary
objectives shall be reached:

• Investigate whether horizon acquisition can be performed accurately enough for
attitude determination.

• Determine whether the very dynamic and time-critical problem can be solved with
an embedded system with reasonable time resolution and power consumption.

Secondary objectives are:

• to show physical or systematic limits and problems of the general approach.

• to determine, if a future attitude determination system following the general
approach would be applicable also for small satellites." [RGW+14, 1.3]

1.3.5 Requirements

Table 1.1: brief software requirements of the HORACE project [RGW+14, 2.2]
ID Requirement text
F-S-02 The FS shall calculate the 2D vector to the 2D projection of the earth

center.
F-S-03 The FS shall save the experiment data with global timestamp.
D-S-07 Of the calculated data the FS shall save the stop of calculation timestamp.
P-S-01 The 2D vector to the earth center should be calculated with 2 digits.
P-S-04 When the rocket is spinning with low rates (< 0.3Hz) AND if there are no

image disturbances the results of horizon acquisition should be successful
in 90% of those cases.

P-S-09 When the rocket is spinning with high rates (> 1.0Hz) AND if there are
many image disturbances the results of horizon acquisition should be suc-
cessful in 30% of those cases.

P-S-10 The amount of false negative horizon acquisitions should be less than 10%.

In table 1.1 important software requirements, concerning the algorithm are listed. False
negatives in this context are failed detection where a horizon is clearly visible whereas
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false positives are detections where no horizon is visible. The mentioned image distur-
bances are phenomena like

• sun in the image

• lens flares

• too dark illumination

• too bright illumination.

A horizon acquisition is successful if

• the ratio between the calculated earth radius and the real earth radius r
R

holds
0.9 < r

R
< 1.1

• the error of the calculation of the center of earth e (euclidean distance) related
to the real earth radius R holds e

R
< 0.1

(cf. [RGW+14, 2.2])



2 Algorithmic Approach

2.1 Basic Idea
When looking at a picture like the one in figure 2.1 it is easy for the human mind
to identify the earth, the sun and even sun flares. We can tell where the center of
the earth must be at first glance. That is because our brain can recognize objects
and is able to compare them with familiar objects from the memory. But how can a
computer manage this? To make it possible for machines to acquire the earth’s horizon,

Figure 2.1: Image of the earth’s horizon and the sun taken from a REXUS rocket by
the team EXPLORE

this approach, illustrated in 2.2 uses the high contrast between the earth (bright) and
space (dark). The first step in the preprocessing is to convert the coloured image into a
grayscale image. This image is then converted to a black-and-white image also known
as binary image. Now bright areas of the picture are represented by pixels holding
1, respectively dark areas by pixels holding 0. The border between a 1 area and a 0
area is called an edge. Since the contrast between earth and space is high, the horizon

14



2. Algorithmic Approach 15

is an edge in the picture. Unfortunately, it can happen, that the horizon is not the
only edge in the picture. Therefore, it is necessary to find the edge that represents the
horizon. Having found this edge, the horizon line still is a set of pixels that are part
of a circle. To find this circle, represented by its center and the radius, this algorithm
finds a circle that fits the best to all data points. Having the center of the circle that
represents the earth’s horizon it is obvious how to calculate the direction vector from
the image frame origin to the center.

Figure 2.2: activity diagram oft the algorithm

Figure 2.3: image frame coordinate system
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2.2 Detailed Steps
To simplify further explanations there is a list of all assumptions. All quantities are
measured in pixels:

• let the origin of the coordinate system, with the axes x an y, be in the top-left
corner of the image (see fig. 2.3)

• the x-coordinate increases by moving right

• the y-coordinate increases by moving down

• let hs be the height (y-direction) of image s

• let ws be the width (x-direction) of image s

• let ks be the number of channels in image s

• let bs be the brightness of image s determined in 2.2.1

• let bs(i) be the brightness of pixel i in the image s

• let pi be a point with the coordinates (xi, yi) where i œ N+, i < hs · ws is the
index of a pixel i

• let fs(p, c) be the content of the channel c of image s at position p

• fs(p) is used as abbreviation for fs(p, 0) and is only valid if k = 1

• let fs(l, m) Ω u be an assignment of the value u to the value of m at point l in
image s

2.2.1 Preprocessing
The preprocessing step checks if the image is worth calculating. If the horizon is not
visible in the picture, the calculation will clearly not succeed and the time, spend on
the calculation, was pointless. Thus, it is reasonable to check whether the horizon is
visible as long as the check does not cost more time than a futile calculation. This is
done by determining the brightness of the image and excluding images with very high
or low values from further calculation. The brightness is determined in the following
manner:

• let 0 Æ a Æ 1 be the ratio of pixels that are gathered for brightness determination

• let n = hs · ws · a be the number of pixels that are gathered for brightness
determination

• let r() œ N+, r() Æ hs · ws be a di�erent random number every time it is used

• let bmax be the maximal brightness value

• let bmin be the minimal brightness value
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• the brightness bs(i) of pixel i in image s is defined as the arithmetic average of
the values of its channels:

bs(i) :=

ksq
c=1

fs(pi, c)

ks

(2.1)

• the brightness bs of image s is then defined as the arithmetic average of its random
pixels.

bs :=

nq
i=1

bs(r())

n
(2.2)

• decide according to the pattern:

instruction =

Y
__]

__[

skip, bs > bmax

accept, bmax Ø bs Ø bmin

skip, bs < bmin

(2.3)

2.2.2 Threshold Filter
The threshold filter converts a multi channel image s like the one in figure 2.1 into a
binary image t (fig. 2.4), that means there is only one channel (kt = 1) and there are
only two valid values of a pixel 1 (white) and 0 (black). In this thesis two methods are
defined to apply a threshold filter, the static and the dynamic method.

Method 1: static

The static method compares the brightness bs(i) of a pixel i in an image s with the
threshold value and decides whether the value of the new image t is 1 or 0 according
to the following scheme:

• let bthresh be the static threshold value

• for all i œ N+, i Æ hs · ws is

ft(pi) Ω

Y
]

[
1, bs(i) Ø bthresh

0, else

Method 2: dynamic

In contrast to the static method, the dynamic method compares the brightness bs(i)
(2.1) of a pixel i in an image s with the product of the the brightness of the image bs

(2.2) and a factor. Then it is decided whether the value of the new image t is 1 or 0
according to the following scheme:

• let bfactor be the dynamic threshold factor

• for all i

ft(pi) Ω

Y
]

[
1, bs(i) Ø bs · bfactor

0, else
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Figure 2.4: threshold Filter applied to image in fig 2.1 with the static method and
threshold value 80

2.2.3 Line Detection
The line detection is an edge detection with a subsequent selection of a line. An edge
is the border between 1 and 0 components of an image. If there is more than one edge
a line detection is necessary to select one.
The following is assumed:

• a line L = {p, q, r...} is a set of points

• |L| is the length of the line L (number of elements)

• L Ω pi expands the set L by the point pi

Method 1: topological search

The topological search analyses the topological structure of binary images by border
following. It first searches with a TV raster scan for a pixel that satisfies the criteria
for a border pixel and then follows that border until it finds the pixel it started from.
While following it marks the border pixels with a unique identifier. After being done
with one border it resumes the TV raster scan to find the next border and repeat the
procedure until it reaches the end of the image. Algorithm 2 in [SA83] is modified in
a way that it only detects outer borders, that means if a border is enclosed by another
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Figure 2.5: edge detection applied to image in 2.4 with method topological search

border, this border is not detected. The longest border is then selected as the horizon
line, the line that is presumed to contain the horizon (see fig. 2.6).
This is the algorithm introduced by Satoshi Suzuki and Keiichi Abe in [SA83]. This
method is the Algorithm 2 in [SA83] with the following extensions:

• let m œ N+
0 be the number of the border

• for every border m is Lm Ω (j3, i3), for m = |NBD| (j3, i3 and NBD from [SA83,
Algorithm 2]) if and only if

– case (a) or (b) in substep (3.4) is accepted
– x ”= 0
– y ”= 0
– x ”= wt

– y ”= ht

• select horizon line Ht = {Lq for q œ N+, |Lq| = max}

Method 2: erode

The method "erode" shrinks the 1 components of a binary image s and subtracts the
resulting image from the original image. The remaining pixels are the edges of the 1
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Figure 2.6: line detection applied to image in 2.5 with method topological search

components. Since it is not possible to distinguish the borders, all edges are one line
and the line selection is obsolete. This means in detail:

• the g-neighbourhood of a pixel i are the pixels inside the square with center i and
the edge length g œ [3, 5, 7, ..., min(hs, ws)]

• let

Gg(i) =
xi+Â g

2 Êÿ

x=xi≠Â g
2 Ê

yi+Â g
2 Êÿ

y=yi≠Â g
2 Ê

fs((xi, yi), 0) (2.4)

be the number of pixels in the g-neighbourhood that have the value 1 where
i œ {k œ N+|ws ≠ Âg

2Ê > xk > Âg
2Ê · hs ≠ Âg

2Ê > yk > Âg
2Ê}

• let a œ [1, 2, 3, ..., g · g ≠ 1] be the erode threshold value

• the horizon line

H = {pi|Gg(i) > 0 · Gg(i) < a · fs(pi) = 1} (2.5)

2.2.4 Vector Calculation
The desired vector is the direction vector from the center of the image to the center of
the 2D projection of the earth in the image plain. The center of the earth is calculated
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with the Least Square Method. It takes the horizon line H, which must contain at
least “ points, as input and calculates the best fitting circle to these data points. Not
only the center is calculated but also the radius of the earth in the image plain. This
allows to check if the calculation returned a valid result by comparing the radius with
the expected radius given by the height above ground.

Circle Fit

Let “ be the minimal number of points in the horizon line H.

instruction =
Y
]

[
skip, |H| < “

accept |H| Ø “
(2.6)

The Least Square method minimizes the error e(⁄1, ⁄2, ⁄3, ...) = fd ≠f(⁄1, ⁄2, ⁄3, ...) of
a function f to its desired value fd by finding the optimal parameters ⁄i. The equation
for the least square fit is (cf. [Lea14])

⁄2
1 = (x ≠ ⁄2)2 + (y ≠ ⁄3)2 (2.7)

where p = (x, y) œ H is a data point,⁄1 is the radius and (⁄2, ⁄3) are the coordinates
of the center of the circle. The error e is then:

e(⁄1, ⁄2, ⁄3) = (x ≠ ⁄2)2 + (y ≠ ⁄3)2 ≠ ⁄2
1 (2.8)

The non-linear equation 2.7 can be linearized by the substitutions

A := 2⁄2 (2.9)
B := 2⁄3 (2.10)
C := ⁄2

1 ≠ ⁄2
2 ≠ ⁄2

3 (2.11)

as follows (cf. [Lea14]) :

Ax + By + C = x2 + y2 (2.12)
To minimize the error of the complete data set the sum of every error square

E(⁄1, ⁄2, ⁄3) =
|H|ÿ

i=1
e2

i (⁄1, ⁄2, ⁄3) (2.13)

=
|H|ÿ

i=1
[(xi ≠ ⁄2)2 + (yi ≠ ⁄3)2 ≠ ⁄2

1]2 (2.14)

=
|H|ÿ

i=1
[Axi + Byi + C ≠ x2

i ≠ y2
i ]2 (2.15)

must be minimized. This is done by solving the system (cf. [Lea14])

1
ˆE
ˆ⁄1

ˆE
ˆ⁄2

ˆE
ˆ⁄3

2
=

1
0 0 0

2
(2.16)
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All following sums in this section without indicated limits are
|H|q
i=1

. The solution of 2.16
is the following system (cf. [Lea14]) :

Q

ca

q
x2

i

q
xiyi

q
xiq

xiyi
q

y2
i

q
yiq

xi
q

yi |H|

R

db

Q

ca
A
B
C

R

db =

Q

ca

q
xi(x2

i + y2
i )q

yi(x2
i + y2

i )q
x2

i + y2
i

R

db (2.17)

The substitutions 2.18 and 2.19 are done to simplify the view:

Q

ca
K L M
L P O
M O N

R

db :=

Q

ca

q
x2

i

q
xiyi

q
xiq

xiyi
q

y2
i

q
yiq

xi
q

yi |H|

R

db (2.18)

Q

ca
Q
R
S

R

db :=

Q

ca

q
xi(x2

i + y2
i )q

yi(x2
i + y2

i )q
x2

i + y2
i

R

db (2.19)

The equation 2.17 can be solved for A, B and C as follows:

A = O2Q ≠ NPQ + LNR ≠ MOR ≠ LOS + MPS

L2N ≠ 2LMO + KO2 + M2P ≠ KNP
(2.20)

B = LNQ ≠ MOQ + M2R ≠ KNR ≠ LMS + KOS

L2N ≠ 2LMO + KO2 + M2P ≠ KNP
(2.21)

C = MPQ ≠ LOQ ≠ LMR + KOR + L2S ≠ KPS

L2N ≠ 2LMO + KO2 + M2P ≠ KNP
(2.22)

The desired values reveal then as:

radius ⁄1 =
Ô

4C + A2 + B2

2 (2.23)

center x-coordinate ⁄2 = A

2 (2.24)

center y-coordinate ⁄3 = B

2 (2.25)

Radius Check

To verify the calculation, the expected radius in the image is determined via the height
above ground, the radius of the central body and the parameters of the optical system.
An sketch of the system is given in figure 2.7. The point M is the center of the earth
while point L defines the position of the lens. The line segment d defines the distance
between the lens and the optical sensor whereas h represents the height above ground.
Due to the characteristics of the optical system, only the part of the sphere between
the two tangential boundary points T1 and T2 is visible. The radius of the central body
is called re, the radius of the circle in the image is rb and the visible radius of the
central body is ra.
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Figure 2.7: sketch of the optical system

It is obvious that

tan – = ra

h + n
= re ≠ n

ra

(2.26)

sin – = re ≠ h

re

= re

h + re

(2.27)

∆ n = r2
a(h + re)

r2
e

≠ h (2.28)

The theorem of intersecting lines states:

rb = rad

h + n
(2.29)

Plugging formula 2.28 in 2.29 with use of the Pythagorean theorem

r2
a = r2

e ≠ (re ≠ n)2 (2.30)

shows:
rb = redÒ

h(h + 2re)
(2.31)

To convert rb in pixels, the width of one pixel of the optical sensor p must be given.
The expected radius of the circle in pixels rp is then

rp = rb

p
(2.32)

= red

p
Ò

h(h + 2re)
(2.33)

The following is assumed:
• let z be the margin of the radius check in pixels

• let hmax be the maximal height above ground (e.g. apogee of the orbit)

• let hmin be the minimal height above ground (e.g. perigee of the orbit)
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The maximal radius rp,max and the minimal radius rp,min are then:

rp,max = red

p
Ò

hmin(hmin + 2re)
+ z (2.34)

rp,min = red

p
Ò

hmax(hmax + 2re)
≠ z (2.35)

Decide as follows (with formula 2.23):

instruction =

Y
__]

__[

skip, ⁄1 > rp,max

accept, rp,max Ø ⁄1 Ø rp,min

skip, ⁄1 < rp,min

(2.36)

2D Vector

The direction vector v̨d from the center of the image s to the center of the 2D projection
of the earth is then obviously (with formula 2.24 and 2.25) given by

v̨d = 1
ı̂ıÙ

A

⁄2 ≠
ws

2

B2

+
A

⁄3 ≠
hs

2

B2

Q

ccca

⁄2 ≠
ws

2
⁄3 ≠

hs

2

R

dddb (2.37)

2.2.5 Height Calculation
The formula 2.33 already states a relation between the radius of the circle in the image
in pixels and the height above ground. This equation is solved for h and reveals the
height above ground for h Ø 0

h = re

Q

a

Ò
d2 + ⁄2

1p2

p · ⁄1
≠ 1

R

b (2.38)

where re is the radius of the central body, d is the distance between lens and optical
sensor (cf. fig. 2.7) , p is the width of a pixel on the optical sensor and ⁄1 is the radius
of the circle in the image (cf. formula 2.23) .

2.2.6 Division
In case of the the image in fig. 2.6 the vector calculation (cf. 2.2.4) of ⁄1, ⁄2 and ⁄3
delivers a circle similar to the one in figure 2.8. But the radius check registers the failed
calculation and skips the image. This happens because the sun is in the image and the
edges of the sun and the horizon overlap. But there is a part of the horizon’s edge that
is not influenced by the sun and would deliver a valid calculation. Thus, the image is
divided in two parts every time a calculation failed by cutting the longer side in the
middle. And that is also done for every resulting image until the image is either too
small for further calculation or was skipped in the preprocessing step (cf. 2.2.1). In
this example the image is divided two times and delivers four partial images (cf. figure
2.9). The image 4 is skipped by the preprocessing step in formula 2.3 because it is too
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Figure 2.8: failed vector calculation of image 2.6

dark. Images 3 and 4 fail again during calculation, only image 1 (cf. 2.11) delivers a
valid calculation. If there is more than one valid calculation, the result of the complete
image is the median of all partial results (see fig 2.10).

Figure 2.10: division activity diagram
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Figure 2.9: Image in 2.1 divided in four parts

The image is divided as follows:

• let the image s be the original image

• let the images t and u be the resulting partial images

• let ” œ N+, ” Æ hs · ws be the minimal number of pixels an image must have to
be divided

• decide for image s as follows

instruction =
Y
]

[
skip, ws · hs < ” · bs > bmax · bs < bmin

accept else
(2.39)

(2.40)
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Figure 2.11: line detection of image 1 in fig. 2.9

• if hs < ws

wt = wu = ws
2 (2.41)

ht = hu = hs (2.42)
fu((x, y), 0) Ω fs((x + wu, y), 0), ft((x, y), 0) Ω fs((x, y), 0) (2.43)

’x œ N+, x < wu, y œ N+, y < hu (2.44)

• if hs Ø ws

wt = wu = ws (2.45)
ht = hu = hs

2 (2.46)
fu((x, y), 0) = fs((x, y + hu), 0), ft((x, y), 0) = fs((x, y), 0) (2.47)

’x œ N+, x < wu, y œ N+, y < hu (2.48)

• start with images u and t from the beginning (preprocessing)



3 HORACE Payload

3.1 OpenCV
"Open Source Computer Vision Library (OpenCV) is an open source computer vi-
sion and machine learning software library. OpenCV was built to provide a common
infrastructure for computer vision applications and to accelerate the use of machine
perception in the commercial products. Being a BSD-licensed product, OpenCV makes
it easy for businesses to utilize and modify the code. The library has more than 2500
optimized algorithms, which includes a comprehensive set of both classic and state-of-
the-art computer vision and machine learning algorithms. [...] OpenCV’s deployed uses
span the range from stitching streetview images together, detection of swimming pool
drowning accidents in Europe, inspecting labels on products in factories around the
world [...] on to rapid face detection in Japan. It has C++, C, Python, Java and MAT-
LAB interfaces and supports Windows, Linux, Android and Mac OS." [Ope14, about]
Especially because of its C++ interface, the Linux support and the wide range of
algorithms, OpenCV is eminently suitable for an application in HORACE.

3.2 Hardware
3.2.1 Core System
The CS is the main computer of HORACE and provides among other functionalities
the platform for the algorithm. The embedded computer, Pico-ITX MIO-2260 with an
Intel Atom CPU, is connected to the CAM (see 3.2.2) via GigE Vision and stores data
to a SSD using the Serial Advanced Technology Attachment (SATA) interface. The
operating system Arch Linux is the basis for all tasks within the CS (cf. [RGW+14,
4.5.2]).

3.2.2 Camera
The camera which observes the outer environment is the industrial CMOS camera
mvBlueCOUGAR-X102b manufactured by Matrix Vision. It provides the image data
as consecutively and uniquely numbered frames via GigE-Vision interface to the CS
(see 3.2.1) . This interface provides a fast data throughput to the CS. The CAM is
set to deliver images with a resolution of (1024 x 768)px in 8bit RGB using automatic
exposure. With a global shutter and a maximal blindness of 1/8.333 s after full illu-
mination good pictures can be provided also under rough conditions like high spinning
rates and looking regularly into sun (cf. [RGW+14, 4.5.1]).

28
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3.2.3 Lens
The lens Lensagon BT8020N manufactured by LENSATION is screwed onto the CAM
and can be focused to an object distance between 20cm and infinity. The focal length
is 8mm and has a optical distortion less than -1.6% (cf. [LEN]).

3.3 Implementation
The HORACE algorithm was implemented using Apple’s Xcode 5.1.1 on OSX 10.9.4
with OpenCV 2.4.9. Since the development started in a very early phase of the project
when no hardware was available yet, the algorithm was designed as a stand-alone ver-
sion to run on a Desktop PC and as a thread, embedded in the HORACE framework.
By defining the preprocessor macro DEBUG in the build command and including a
separate main-file algorithm_main.cpp the algorithm runs on the local machine includ-
ing loading videos, showing results and creating videos. When compiling the complete
HORACE project with the compiler g++4.7 on Ubuntu 12.04, the preprocessor macro
DEBUG was omitted.
During implementation the algorithm in chapter 2 was developed. The steps pre-
processing, threshold filter, line detection and vector calculation are all done in the
function process in class horace_algorithm. OpenCV’s functions cvtColor and thresh-
old are used to convert the image first in a grayscale image and then to apply a dynamic
threshold filter according to 2.2.2. The topological search was applied to the image by
the function findContours in OpenCV with the parameter CV_RETR_EXTERNAL
as mode to only detect outer borders. The circle fit and the vector calculation was
implemented as described in 2.2.4. The step division is implemented with the function
computeFrame and devideAndConquer as defined in 2.2.6 with one exception. The
function computeFrame starts the calculation by scaling the image down to a defined
size with OpenCV’s function resize. This reduces the amount of data that has to be
calculated but decreases the accuracy of the results. An optimal size of (533 x 400)px
was determined experimentally.
The function run in the class horace_algorithm is an infinite loop that first captures
a new image, starts the time measurement and then starts the actual calculation by
calling the function computeFrame. In case of the stand-alone version, the time mea-
surement is then stopped, the results of the calculation are shown and the procedure
starts from the beginning. In the thread version the procedure is the same, except
that the results of the calculation are not shown but saved and pushed to the downlink
bu�er.
The parameters are set according to table 3.1 and can be found in the file globalDe-
fines.h. The parameters concerning the optical system have been copied from the data
sheets of the lens (cf. [LEN]) and the camera (cf. [VIS]). The maximal and minimal
height has been defined regarding the the expected position for promising image data.
All other parameters have been determined experimentally.
The source files as well as the executable for OSX of the HORACE algorithm can be
found in the appendix.
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Table 3.1: parameters of the within the HORACE algorithm
Discription Name Value
dynamic threshold factor bfactor THRESHOLD_FACTOR 0.75
width p of a pixel on the optical sen-
sor

SENSOR_PIXEL_WIDTH 3.75 µm

minimal number of points “ in the
horizon line

MIN_DOTS 5

distance d between the lens and the
optical sensor

LENS_SENSOR_DISTANCE 8 mm

radius re of the central body RADIUS_CENTRAL_BODY 6371.0 km
maximal height above ground hmax APOGEE 100.0 km
minimal height above ground hmin PERIGEE 20.0 km
maximal brightness value bmax PREPROCESSING_

THRESHOLD_WHITE
235

maximal brightness value bmin PREPROCESSING_
THRESHOLD_BLACK

5

margin of the radius check z RADIUS_MARGIN 5000.0
minimal height an image must have
to be divided

FIXED_CALC_IMG_HEIGHT 400

3.4 Evaluation
For the evaluation process after the flight, a special evaluation library was created whose
main feature was to load images in the RAW format and export them as a video. Since
the images are not fetched in a defined rate from the CAM but the video format AVI
needs a constant rate, a program had to be developed that includes the time gaps
between the images. Furthermore, the functionality to show saved calculation results
was added to the program which can be found in the appendix with the name raw2avi.

3.4.1 Testing with Real Image Data
For the development of the algorithm and the testing of its performance, a video, taken
during an earlier REXUS flight by the team EXPLORE, was used. Since no data about
the optical system was available, the parameters for the maximal and minimal height
above ground hmax and hmin were determined experimentally. The resulting video is
available in the appendix (see table 6.1). The yellow line indicates the circle that
represents the detected horizon. A red X means, that for this frame no vector was
successfully calculated. The information about the radius and the center of the circle
in pixels can be found in the bottom-left corner. The needed time per frame is also
indicated but is not the time a calculation on the CS would take. The video is in
the format (800 x 600)px and the simulation was executed on an MacBook Air with
an 1.6 GHz, Intel Core 2 Duo processor, a 4 GB, 1067 MHz, DDR3 memory and the
operating system OSX Mavericks using OpenCV 2.4.9. Besides, this video was taken
with a GoPro which has a strong fish eye lens. Those distortions have been corrected
manually but are still visible in some areas near to the edge of the image and may
cause calculation failures.
Clearly visible is that the horizon is detected reliably if no disturbances like the sun
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or lens flairs are in the picture. The position and radius of the circle are the same as
if a human had mapped it. The amount of false positives and false negatives is very
low. Even in images with disturbances, the horizon is correctly detected, however, the
accuracy is lower.

3.4.2 Flight Data
Due to a camera failure described in [Rap14, 2.4] all image data is overexposed and
a majority of images is completely white. At least the preprocessing step could be
tested, since all image had to be skipped. According to [Rap14, 3.5.3] the number of
false positives and the number of false negatives are both zero. As the distribution of

Figure 3.1: calculation times of images during flight (cf. [Rap14, figure 3-4])

the calculation time of the algorithm, illustrated in fig. 3.1, shows, are most frames
calculated under 100 ms. Still, this number is not a reliable source to indicate the
algorithm’s performance since the images have not been completely calculated and the
algorithm runs as thread on an operating system that saves a huge amount of data
(raw image files) to a solid state disk (SSD) at the same time.

3.4.3 Simulation
The test with the video by team EXPLORE (see 3.4.1) showed that the approach works
generally but the accuracy could not be determined. Therefore, a simulation video was
created where the position, the orientation and the parameters of the optical system
of the camera are predefined and thus known (cf. [Rap14, 3.5.4]). This video is also
available in the appendix (see table 6.1). The angular di�erence between the vector
given by the simulation and the vector calculated by the algorithm was determined and
a plot of its frequency was created (fig. 3.2). An evaluation of this plot reveals that
the accuracy of the direction vector is 0.6¶, that means the requirement P-S-04 (see
table 1.1) is accomplished. Furthermore, the length of the vector from the center of the
image to the center of the 2D projection of the earth is compared with the same vector
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Figure 3.2: angular accuracy of the direction vector during simulation (cf. [Rap14, 3.5])

given by the simulation. Both values are plotted vs. the image ID and illustrated in
figure 3.3. Although the values are not in the same unit and thus are not directly
comparable, an e�ect of the dynamic threshold filter is clearly visible. The o�set of
the blue curve to the red curve is caused by the atmosphere. In the atmosphere the
brightness smoothly fades to zero and it is, even for the human eye, hard to determine
where the earth ends and the atmosphere starts. Thus, the threshold value is set to
the brightness of a pixel somewhere in the atmosphere. This increases the radius of the
circle in the binary image and thus the vector of the calculation. Since the dynamic
threshold filter is used, the threshold value decreases if the overall brightness of the
image decreases. The brightness is lower, the less of the earth is visible within the
field of view and in this case the simulated vector is longer. That means, the higher
the length of the simulation vector, the higher is the o�set of the calculation vector.
This e�ect is visible in figure 3.3 especially when comparing the frames 300 and 600.
At frame 300 the o�set is about 400 units, whereas the o�set at frame 600, where the
length is 400 km higher, is about 1300 units.
The ratio of false positives in this simulation was 0% and the ratio of false negatives was
10.29% which means the requirement P-S-10 (see table 1.1) is slightly not accomplished.
The majority of false negatives occurred when the horizon was only slightly visible.
Therefore it is assumed, that the amount of horizon points came below the minimal
value (cf. [Rap14, 3.5.4]).
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Figure 3.3: accuracy of the the length of the vector during simulation (cf. [Rap14, 3.5])

3.5 Documentation
A separate documentation for the HORACE algorithm and the evaluation library was
not generated but the code was commented in detail.
All classes and variables belonging to the algorithm are placed in the namespace algo-
rithm and the evaluation library in the namespace evaluation. Since the algorithm is
not the only thread within the HORACE framework, an abstract class ThreadClass was
created to unify all threads. The class horace_algorithm, which is the main class of the
algorithm, is a derived class of ThreadClass. Here, all functions for time measurement,
image fetching and image processing are defined. The class ImageFrame contains all
information including the image data as OpenCV’s image data type Mat. The class
PartialImageFrame, which is derived from ImageFrame, represents a part of a divided
image and contains, in addition to the information of the ImageFrame, information
about its place inside the original image. At least, the class Result contains the results
of a calculation including the horizon line.



4 The HorizonSensor

4.1 Further Development of HORACE
As mentioned in 1.3.3, HORACE was designed to implement a first prototype and
to test the approach of a horizon sensor via image processing. To bring this system
to the next level, which is an application in an embedded system, it is necessary to
refine it regarding power consumption, mass, size, computational power consumption,
accuracy, calculation speed and memory consumption. The last four items mentioned
are issues of the software design and are approached in this work. OpenCV is a very
powerful tool but was developed for PCs and needs a special run-time environment
that is not simply portable to any embedded system. Thus, one of the tasks of this
work is to implement all functions and data structures from OpenCV that are used
in HORACE with C/C++ standard libraries only. But more important is to have an
implementation that is easily reusable and extendable by multiple persons. So the main
focus of this work is to create a platform for further development of the HorizonSensor
and to create a first functioning algorithm.

4.2 Implementation
Since this algorithm is meant for an application in space systems, that are embedded
systems, it is necessary to adapt the implementation to these systems. To accomplish
this adaption the HorizonSensor is implemented regarding the Coding Directives v10.0
by Prof. Dr. Sergio Montenegro [Mon08]. That means in particular no run-time type
information (RTTI), no exceptions, no inheritance and no data structures that allo-
cate memory dynamically are used. Furthermore, the formal directives concerning the
code structure were adopted to make the source code easier to understand. Since this
library should function on as many systems as possible it is important that the imple-
mentation is compatible with as many compilers and dialects as possible. Therefore,
it was made sure during development that the code is compilable with the dialects
c++98, gnu++98, c++11 and gnu++11 using the C++ standard libraries libstdc++
and libc++. The tested compilers are g++4.6, g++4.7, g++4.8 and clang++503.0.40
on osx 9.4. The binary for each compiler is available in the appendix (see table 6.1).
The development environment was Apple’s Xcode 5.1.1 on OSX 10.9.4 with OpenCV
2.4.9. All source files of the HorizonSensor can be found in the appendix (see table
6.1).

4.2.1 User Interface
In the following context, the programmer embedding the HorizonSensor in his software
is called user. The user needs to include the file HorizonSensor.h and keep all other files
that belong to the HorizonSensor Library in the same directory as HorizonSensor.h.

34
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The user interface is carried out with three classes HorizonSensor, ImageFrame and
Result. The image data is passed as an unsigned char * along with the image width,
the image height and the channels to the constructor of ImageFrame. The channel
represents the number of colors that are used in the image data, e.g. in a RGB picture
the number of channels is three. Due to the data format unsigned char, the color
depth is limited to 8 bit. The image data is a pointer to an array containing the image
information in the following format. All pixels are subsequently ordered row-by-row, as
if one would take every row of the image from top to bottom and put them in one line.
The pixel itself has its channels ordered also subsequently. An RGB image would then
result in an array like R1G1B1R2G2B2R3.... This ImageFrame is passed to the method
findHorizon(ImageFrame) in HorizonSensor. The function executes the calculation on
the image data given in ImageFrame and returns the result as a Result object. There,
the user can find getter for the direction vector in pixels, the height above ground in
meters, the radius in pixels and the center in pixels.

Figure 4.1: changing parameters
HorizonSensor sensor;
sensor.param. setThresholdMethod (STATIC);

ImageFrame frame = ImageFrame (myImageData ,
myWidth ,
myHeight ,
myChannels );

Result result;
result=sensor. findHorizon (frame);

Vector2f vec;
vec=result. get2DDirectionVector ();

Figure 4.1 shows an example on how to use the HorizonSensor. To adapt the algorithm
for a certain application it is essential to be able to easily change parameters and
methods. In this implementation it is possible to adjust the calculation by simply
calling one function with one parameter even during run-time. In the shown example
the user changes the method, that converts the image into a binary image, to the
STATIC method (line 2 in fig. 4.1). The HorizonSensor then executes the STATIC
threshold method (cf. 2.4) for all successive calculations (see figure 4.3).

4.2.2 Code Structure
In this example the modular structure of the algorithm is nicely visible. Every step
in the calculation can be done somehow di�erent and it depends on the application
which of them is the most suitable. Thus, there are functions called super functions in
the following context, that have got the task to execute the chosen method by calling
the corresponding function which is referred to as subfunction. In case of the thresh-
old filter there are currently two methods available, the STATIC and the DYNAMIC
one (for more information see section 2.2.2). Every single step has a corresponding
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Figure 4.2: threshold method enumeration
/*!

\brief defines all possible threshold methods
*/

enum ThresholdMethod {

/*!
\brief the threshold value is set according to the

brightness of the image
*/

DYNAMIC ,
/*!

\brief the threshold value is fixed
*/

STATIC ,

};

enumeration (here ThresholdMethod see fig. 4.2), a super function (here thresholdFil-
ter(ImageFrame& _imageFrame) see fig. 4.3) and an entry in the Parameter class.
When the HorizonSensor executes the threshold filter (super function), the function
chooses the method (subfunction) according to the value in Parameter. All parameters
are accessible through setters and getters in the class Paramter which is a member
variable (param) in HorizonSensor.
This procedure also makes it easy to add new methods because it only requires a new
entry in the enumeration (see figure 4.2) and another case in the switch statement (see
figure 4.3).

4.2.3 Overall Design
Since a detailed description is given in the appendix, only the main structures are
explained here. The complete HorizonSensor (including HorizonSensorTest) is situ-
ated in the namespace hs. The class HorizonSensor is basically a library of functions
that are needed for the calculation (see 4.5). The function findHorizon() is the only
public member function (except the constructor) because this function is executed by
the user. All other functions are executed internally by the function processFrame().
Because there are several methods for every single step of the algorithm (as mentioned
in 4.2), every step has a corresponding function that executes the method chosen by
the user. In the following context these methods are called subfunctions and functions
that execute the subfunctions are called super funtions. Every subfunction performs a
modification on the ImageFrame it gets passed. For example, the subfunction deter-
mineRandomBrightness() determines the brightness of the image and stores the result
in the ImageFrame.
The subfunction uses the parameters, given in the public member variable param to
perform the modification.All parameters in the class Parameter are accessible through
setters and getters, hence it is easy for the user to find and change a certain parameter.



4. The HorizonSensor 37

Figure 4.3: super function of the threshold filter

}

bool HorizonSensor :: thresholdFilter ( ImageFrame & _imageFrame
){

switch (param. getThresholdMethod ()) {

case DYNAMIC :
return dynamicThresholdFilter ( _imageFrame );
break;

case STATIC:
return staticThresholdFilter ( _imageFrame );
break;

default :
return false;

The class ImageFrame (see fig. 4.4) contains all information about an image and
provides functions to access this data. Because this class is part of the user interface,
all functions that modify calculated data are set to private. This requires the class
HorizonSensor to be a friend class of the class ImageFrame.
The private member variable result of the type Result is accessible via a getter and
contains the results of the calculation of this ImageFrame. The results and the used
parameters are then accessible with getters.
Points and vectors are implemented with integer and floating point values in two
and three dimensions with a separate class each (Vector2i, Vector2f, Vector3i, Vec-
tor3f,Point2i, Point2f, Point3i, Point3f ). They are equipped with operators for addi-
tion, subtraction, multiplication, division and comparison where reasonable. The class
RegionOfInterest serves as a data interface for the subfunction topologicalSearch().
Since this function needs di�erent data structures than given in ImageData the class
provides all needed data structures and contains functions to simplify the data access.

4.2.4 Preprocessing
Since the preprocessing step consists only of the brightness determination, one super
function named determineBrightness and one subfunction determineRandomBrightness
was created. Since the image data in ImageFrame is accessed with the parameters
x-coordinate, y-coordinate and the channel, the algorithm was changed. Instead of
using one random number that represents one pixel, two random numbers for each
of the coordinates were used. The parameter a was implemented as float and named
brightnessReferencePixelRatio. The maximal and minimal brightness values, bmax and
bmin, are named brightnessThresholdWhite and brightnessThresholdBlack. The result
of the brightness calculation is stored in the variable brightness in class ImageFrame.
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Figure 4.4: Collaboration
diagram for
class Image-
Frame

Figure 4.5: collaboration
diagram for
class Horizon-
Sensor
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4.2.5 Threshold Filter
For the step threshold filter the super function thresholdFilter, the subfunctions static-
ThresholdFilter and dynamicThresholdFilter have been created. Both subfunctions use
in-situ memory, that means they modify the existing array imageData in ImageFrame
and no additional array is created. The threshold value bthresh of the static method is
named staticThresholdValue and the threshold factor bfactor of the dynamic method is
named dynamicThresholdFactor.

4.2.6 Line Detection
The line detection has one super function called lineDetection and two subfunctions
called topologicalSearch and erodeImage. Since the focus of this work is to create a
platform for further development the implementation of the algorithm 2 of [SA83] was
waived. The method used in topologicalSearch is the algorithm 1 in [SA83] but with
the extensions mentioned in 2.2.3. That means the topological search detects not only
outer borders but also inner borders. This must be changed while further development.
The neighbourhood edge length g of method erode is named erodeEdgeLength and
the threshold value a erodeThresholdValue. The horizon line is stored in the array
horizonLine in ImageFrame.

4.2.7 Vector Calculation
The step vector calculation is only partially done in class HorizonSensor. The calcula-
tion of the 2D direction vector is done in class Result because there are several results
available but not all are always needed. This way, only the results that are utilized are
calculated and some calculation time is saved. The other two substeps circle fit and
radius check are implemented in the subfunction circleFit which is called by the super
function calculateVector. The radius ⁄1 is stored in the variable radius in class Result
and the center in variable center in class Result. The parameters of the formulas 2.34
and 2.35 are named as follows:
The minimal number of points in the horizon line “ is named minHorizonPoints. The
margin of the radius check in pixels z is named radiusPixelMargin. The maximal height
above ground hmax is named apogee. The minimal height above ground hmin is named
perigee. The radius of the central body re is named radiusCentralBody. The width of
one pixel on the optical sensor p is named sensorPixelWidth. The distance between
the lens and the optical sensor d is named lensSensorDistance.

4.2.8 Division
Since this step only increases the performance of the algorithm regarding false neg-
atives, the implementation was waived. Only the function that divides an image is
implemented and tested. This step is meant to be implemented as subfunction pro-
cessDivideImage for the super function processFrame. Instead a subfunction named
processStraightForward that executes all steps subsequently without any division was
implemented.



4. The HorizonSensor 40

4.2.9 Height Calculation
The step height calculation is implemented in class Result and named getHeight.

4.3 Evaluation
To test the HorizonSensor a specially designed test environment - HorizonSensorTest
- was implemented.

4.3.1 HorizonSensorTest
HorizonSensorTest uses the OpenCV framework (see 3.1) to load, show and store im-
ages and videos, whereas the HorizonSensor library itself is completely independent
from this framework. OpenCV can easily be installed on Linux and OSX but also
on Windows. On Linux the installation is done via the packet managing tool e.g. in
Ubuntu apt-get, see fig. 4.6.

Figure 4.6: installing OpenCV on Linux
#linux
sudo apt -get install libopencv -core2 .4 libopencv - highgui2 .4

libopencv - imgproc2 .4

On OSX the installation using MacPorts is the easiest way. Therefore the free command
line tool MacPorts (www.macports.org) must be installed and the command in figure
4.7 be executed.

Figure 4.7: installing OpenCV on OSX
#osx
sudo port install opencv

After the installation the HorizonSensorTest binary can be executed via command line
with a variety of parameters in UNIX-style.

Figure 4.8: HorizonSensorTest parameters
[INFO] Parameters are:
[INFO] -iv: input video file
[INFO] -ip: input picture file or directory
[INFO] -t: Test case
[INFO] -l: log file
[INFO] -ov: output video file
[INFO] -op: output picture file or directory
[INFO] -h: Show this message
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As stated in figure 4.8 the input can be a video of any type (-iv), a picture or a folder
with pictures of any type (-ip). One of these options is mandatory. It is also possible
to save the output as pictures (-op) or as a video (-ov), but this is optional. The test
case can be chosen by using the -t option which is also mandatory. The available test
cases can be displayed with the -h option. By using the -l option a log file is created.
An example for the usage of HorizonSensorTest is given in figure 4.9.

Figure 4.9: HorizonSensor parameters
./ HorizonSensorTest_osx9 .4 _clang503 .0.40 -t circlefit -iv /

Path/to/my/input/video.avi -ov /Path/to/my/output/video.
avi -l /Path/to/my/ logfile .txt

The test environment’s basis consists of three classes TestBench, TestCase and Stop-
Watch. The TestBench handles the user input and executes the chosen test case. The
TestCase is an abstract class for all test cases and provides functions to get, show and
save images as well as to simplify the debugging process during testing. The class
StopWatch implements the functionalities of a stop watch. The user can start, stop
and reset the counter in milli seconds accuracy. To add a new test case a new class
that inherits from TestCase must be created and the functions run() and getName()
must be overwritten (see fig. 4.10 ).

Figure 4.10: example of a new test case
class MyTest : public TestCase {

public:
string getName (){ return "MyName"; }

private :
bool run ();

};

The function getName() must only return a string containing the name of the new test
case. In the function run() the complete testing is done using the functions getNex-
tImage(Mat& _destination) to get images and showImages(vector<Mat> _images) to
show and store images. Eventually, the new test case must be included in the file
TestCases.cpp and added to the the list of TestCases with the line in figure 4.11 in the
same file. If using private members of the HorizonSensor classes within the test, it is
necessary to declare the test class as friend class in the used class.

Figure 4.11: adding TestCases
testCases . push_back (new MyTest);

Some example tests have already been implemented and are available along with the
HorizonSensorTest environment files in the appendix (see table 6.1).
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4.3.2 Full Test
To test the HorizonSensor interface, as a user would use the library, a new test case,
class FullTest, was implemented and is available along with the video in the appendix.
The test is very similar to the code in fig. 4.1 with the following extensions. The
topological search is used although it is not fully implemented but for this test satisfi-
able works, since the static threshold filter is used and the threshold value is set to 10
which is very low. The image data is the same as in the simulation for the HORACE
algorithm in 3.4.3. In addition, a test with an image where the earth is fully visible
(fig. 4.12) was conducted. The machine, this test was executed on, was a MacBook
Air with an 1.6 GHz, Intel Core 2 Duo processor, a 4 GB, 1067 MHz, DDR3 memory
and the operating system OSX Mavericks. The test revealed that the HorizonSensor

Figure 4.12: test on image with fully visible earth (source: NASA)

already works although not all steps are fully implemented. This is only possible be-
cause the simulation does not include image disturbances and the threshold value is
set that low, so no inner borders can arise. For the test of the full earth image the
parameter hmax was experimentally determined and the results are also excellent as
can be seen in figure 4.12.

4.3.3 Speed Test
To compare the subfunctions regarding their calculation speed and to identify those
steps with high calculation time impact, a test case - class SpeedTest - for the Horizon-
SensorTest environment was implemented. The used machine is the same as in 4.3.2.
Thus, the absolute values of the measured time are only partly meaningful. However,
comparing the values relatively to each other helps to compare functions and steps.
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Table 4.1: average calculation time of all sub functions
Sub Function Avg. Calc. Time
determineRandomBrightness 16 ms
staticThresholdFilter 89 ms
dynamicThresholdFilter 96 ms
erodeImage 360 ms
topologicalSearch 223 ms
circleFit 0 ms

Table 4.1 shows the results of this test, using the video that is also used in 4.3.2 and
3.4.3. The test clearly reveals that the determination of the brightness, in comparison
with the other functions, is much less time consuming and is thus a qualified prepro-
cessing method. According to this simulation the di�erence between the static and the
dynamic threshold filter is very small but still noticeable. A much higher di�erence
could be measured between the erode method and the topological search of the line
detection. The topological search is 1.6 times faster than its competitor even though
this method is not in its final implementation (algorithm 2 in [SA83]) which works,
according to [SA83], even faster. Very remarkable is the result of the circle fit whose
time consumption was lower than one millisecond. Comparing the steps results in a
very clear statement: the most time consuming step is the line detection whereas the
vector calculation costs almost no time. This knowledge can be used to optimize the
HorizonSensor regarding calculation speed by concentrating the optimization on the
line detection. Accuracy improvements could be achieved by reapplying the vector
calculation step - since there are only small costs - to partial horizon lines.

4.4 Documentation
The code of the HorizonSensor is documented according to [Mon08]. That means every
namespace, class, method or variable is tagged with doxygen comments. The doxygen
tool, also recommended by [Mon08], is a free tool to create clear documentations for
all kinds of programming languages and is available at www.doxygen.org.
It was used to auto generate an html and a pdf documentation which are available
in the appendix (6.1). The documentation was written in a way that the user is able
to utilise the HorizonSensor without knowing the internal procedures and structures
but is also able to modify the algorithm if necessary. A special documentation for the
HorizonSensorTest environment was not created but the functions, seen by the user
are documented in detail.



5 Conclusion
Unfortunately, the most significant test of this new approach, the test under space
conditions, was, due to a malfunctioning component (cf. [Rap14, 2.4]), only partly suc-
cessful but that does not mean that the project was futile. On the contrary, HORACE
produced a promising prototype of a functioning horizon sensor, even if this approach
is not ultimately proven yet. The part of the software that was tested, that is the
rejecting of bad images, worked excellently (cf. 3.4.2). During tests with real footage
the algorithm showed an sovereign management of images with high disturbances (cf.
3.4.1) and a simulation determined an accuracy of 0.6¶ (cf. 3.4.3). Regarding that this
sensor is still in an very early stage, it is presumable that it can keep up with conven-
tional horizon sensors whose accuracies are between 1¶ and 0.05¶ (cf. 1.1). Although
the HorizonSensor is not as sophisticated as its predecessor yet, it is, especially in
combination with its purpose-built test environment HorizonSensorTest (cf. 4.3.1), a
very powerful and helpful platform for further development. Even though there is some
work to do, especially regarding calculation speed, it is worth the e�ort, because this
sensor system could be, due to its reliability in stress conditions, a valuable extension
to the current set of attitude sensors.

44



6 Outlook
Since this approach is not proven under space conditions yet, another attempt is already
initiated to do so. A new team from the University of Würzburg is preparing the
proposal for an experiment on REXUS 19/20, that ties on the work done by HORACE
and this bachelor thesis. Part of that follow-up experiment might also be a further
development of the software especially regarding accuracy and output data rate and
the implementation of a second attitude system, like gyros, to verify collected attitude
information. In this context, a step that scales the image down to a smaller image, could
be added, to decrease the amount of data that is calculated. Furthermore, a di�erent
approach of the division step could be implemented, where, in contrast to the existing
algorithm, not the complete image is divided and recalculated but only the horizon line
is divided and the vector calculation is repeated. Since the vector calculation is very
fast in comparison to the steps threshold filter and line detection, this new division
method could save calculation time. Due the huge impact of the threshold value on
the accuracy of the calculation, a threshold controller, that autonomously adjusts the
threshold value according to the results of the last image, could be developed. Also,
new test cases for the HorizonSensorTest environment could be developed to integrate
the accuracy analysis as shown in [Rap14, 3.5.4] and thus to simplify the access to test
results. New simulations with more realistic e�ects regarding atmosphere, sun, lens
flairs and eclipse phases could improve the understanding of the impact of these e�ects
on the algorithm’s performance. Moreover a conversion of the direction vector to Euler
angels could be implemented to o�er another alternative to the user.
As long term evolution, an application in a Cubesat of the University of Würzburg is
planned. Therefore, more improvements especially regarding mechanics and electronics
have certainly to be made. Since the University already has experience with star sensors
(STELLA), a combined sensor is an interesting idea, although or right because it is
bold.
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